Exercise 38

Given vectors \mathbf{a} and \mathbf{b} , do the equations $\mathbf{x} \times \mathbf{a} = \mathbf{b}$ and $\mathbf{x} \cdot \mathbf{a} = \|\mathbf{a}\|$ determine a unique vector \mathbf{x} ? Argue both geometrically and analytically.

Solution

Take the magnitude of both sides of the equation involving the cross product.

$$\mathbf{x} \cdot \mathbf{a} = \|\mathbf{a}\|$$
$$\|\mathbf{x} \times \mathbf{a}\| = \|\mathbf{b}\|$$

Suppose that θ is the angle between **x** and **a**.

$$\|\mathbf{x}\| \|\mathbf{a}\| \cos \theta = \|\mathbf{a}\| \qquad \qquad \|\mathbf{x}\| \cos \theta = 1$$
$$\|\mathbf{x}\| \|\mathbf{a}\| \sin \theta = \|\mathbf{b}\| \qquad \rightarrow \qquad \|\mathbf{x}\| \sin \theta = \frac{\|\mathbf{b}\|}{\|\mathbf{a}\|}$$

From the equation $\mathbf{x} \times \mathbf{a} = \mathbf{b}$, the vector **b** is perpendicular to the plane containing **x** and **a**.

A basis for this plane can be written in terms of $\hat{\mathbf{a}}_{\parallel}$, a unit vector parallel to \mathbf{a} , and $\hat{\mathbf{a}}_{\perp}$, a unit vector perpendicular to \mathbf{a} that also lies in the plane.

$$\hat{\mathbf{a}}_{\parallel} = rac{\mathbf{a}}{\|\mathbf{a}\|} \qquad \quad \hat{\mathbf{a}}_{\perp} = rac{\mathbf{a} imes \mathbf{b}}{\|\mathbf{a} imes \mathbf{b}\|}$$

Write \mathbf{x} in terms of these basis vectors.

$$\mathbf{x} = x_1 \hat{\mathbf{a}}_{\parallel} + x_2 \hat{\mathbf{a}}_{\perp}$$

To determine x_1 , take the dot product of both sides with $\hat{\mathbf{a}}_{\parallel}$.

$$\mathbf{x} \cdot \hat{\mathbf{a}}_{\parallel} = x_1(\hat{\mathbf{a}}_{\parallel} \cdot \hat{\mathbf{a}}_{\parallel}) + x_2(\hat{\mathbf{a}}_{\perp} \cdot \hat{\mathbf{a}}_{\parallel})$$
$$\|\mathbf{x}\| \cos \theta = x_1(1) + x_2(0)$$
$$1 = x_1$$

To determine x_2 , take the dot product of both sides with $\hat{\mathbf{a}}_{\perp}$.

$$\begin{aligned} \mathbf{x} \cdot \hat{\mathbf{a}}_{\perp} &= x_1(\hat{\mathbf{a}}_{\parallel} \cdot \hat{\mathbf{a}}_{\perp}) + x_2(\hat{\mathbf{a}}_{\perp} \cdot \hat{\mathbf{a}}_{\perp}) \\ \|\mathbf{x}\| \sin \theta &= x_1(0) + x_2(1) \\ \frac{\|\mathbf{b}\|}{\|\mathbf{a}\|} &= x_2 \end{aligned}$$

www.stemjock.com

Therefore,

$$\mathbf{x} = x_1 \hat{\mathbf{a}}_{\parallel} + x_2 \hat{\mathbf{a}}_{\perp}$$

= $1 \frac{\mathbf{a}}{\|\mathbf{a}\|} + \frac{\|\mathbf{b}\|}{\|\mathbf{a}\|} \frac{\mathbf{a} \times \mathbf{b}}{\|\mathbf{a} \times \mathbf{b}\|}$
= $\frac{\mathbf{a}}{\|\mathbf{a}\|} + \frac{\|\mathbf{b}\|}{\|\mathbf{a}\|} \frac{\mathbf{a} \times \mathbf{b}}{\|\mathbf{a}\| \|\mathbf{b}\| \sin 90^{\circ}}$
= $\frac{\|\mathbf{a}\|\mathbf{a} + \mathbf{a} \times \mathbf{b}}{\|\mathbf{a}\|^2}$.