Exercise 38

Given vectors \mathbf{a} and \mathbf{b}, do the equations $\mathbf{x} \times \mathbf{a}=\mathbf{b}$ and $\mathbf{x} \cdot \mathbf{a}=\|\mathbf{a}\|$ determine a unique vector \mathbf{x} ? Argue both geometrically and analytically.

Solution

Take the magnitude of both sides of the equation involving the cross product.

$$
\begin{aligned}
\mathbf{x} \cdot \mathbf{a} & =\|\mathbf{a}\| \\
\|\mathbf{x} \times \mathbf{a}\| & =\|\mathbf{b}\|
\end{aligned}
$$

Suppose that θ is the angle between \mathbf{x} and \mathbf{a}.

$$
\begin{aligned}
\|\mathbf{x}\|\|\mathbf{a}\| \cos \theta & =\|\mathbf{a}\| \\
\|\mathbf{x}\|\|\mathbf{a}\| \sin \theta & =\|\mathbf{b}\|
\end{aligned} \rightarrow \quad \begin{aligned}
& \|\mathbf{x}\| \cos \theta=1 \\
& \quad\|\mathbf{x}\| \sin \theta=\frac{\|\mathbf{b}\|}{\|\mathbf{a}\|}
\end{aligned}
$$

From the equation $\mathbf{x} \times \mathbf{a}=\mathbf{b}$, the vector \mathbf{b} is perpendicular to the plane containing \mathbf{x} and \mathbf{a}.

A basis for this plane can be written in terms of $\hat{\mathbf{a}}_{\|}$, a unit vector parallel to \mathbf{a}, and $\hat{\mathbf{a}}_{\perp}$, a unit vector perpendicular to a that also lies in the plane.

$$
\hat{\mathbf{a}}_{\|}=\frac{\mathbf{a}}{\|\mathbf{a}\|} \quad \hat{\mathbf{a}}_{\perp}=\frac{\mathbf{a} \times \mathbf{b}}{\|\mathbf{a} \times \mathbf{b}\|}
$$

Write \mathbf{x} in terms of these basis vectors.

$$
\mathbf{x}=x_{1} \hat{\mathbf{a}}_{\|}+x_{2} \hat{\mathbf{a}}_{\perp}
$$

To determine x_{1}, take the dot product of both sides with $\hat{\mathbf{a}}_{\|}$.

$$
\begin{aligned}
\mathbf{x} \cdot \hat{\mathbf{a}}_{\|} & =x_{1}\left(\hat{\mathbf{a}}_{\|} \cdot \hat{\mathbf{a}}_{\|}\right)+x_{2}\left(\hat{\mathbf{a}}_{\perp} \cdot \hat{\mathbf{a}}_{\|}\right) \\
\|\mathbf{x}\| \cos \theta & =x_{1}(1)+x_{2}(0) \\
1 & =x_{1}
\end{aligned}
$$

To determine x_{2}, take the dot product of both sides with $\hat{\mathbf{a}}_{\perp}$.

$$
\begin{aligned}
\mathbf{x} \cdot \hat{\mathbf{a}}_{\perp} & =x_{1}\left(\hat{\mathbf{a}}_{\|} \cdot \hat{\mathbf{a}}_{\perp}\right)+x_{2}\left(\hat{\mathbf{a}}_{\perp} \cdot \hat{\mathbf{a}}_{\perp}\right) \\
\|\mathbf{x}\| \sin \theta & =x_{1}(0)+x_{2}(1) \\
\frac{\|\mathbf{b}\|}{\|\mathbf{a}\|} & =x_{2}
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
\mathbf{x} & =x_{1} \hat{\mathbf{a}}_{\|}+x_{2} \hat{\mathbf{a}}_{\perp} \\
& =1 \frac{\mathbf{a}}{\|\mathbf{a}\|}+\frac{\|\mathbf{b}\|}{\|\mathbf{a}\|} \frac{\mathbf{a} \times \mathbf{b}}{\|\mathbf{a} \times \mathbf{b}\|} \\
& =\frac{\mathbf{a}}{\|\mathbf{a}\|}+\frac{\|\mathbf{b}\|}{\|\mathbf{a}\|} \frac{\mathbf{a} \times \mathbf{b}}{\|\mathbf{a}\|\|\mathbf{b}\| \sin 90^{\circ}} \\
& =\frac{\|\mathbf{a}\| \mathbf{a}+\mathbf{a} \times \mathbf{b}}{\|\mathbf{a}\|^{2}}
\end{aligned}
$$

